Framework Engineering I.
Framework은 우리 개발자에겐 매우 익숙한 물건이다. 다양한 도메인에 여러 Framework이 쏟아지면서, 우리는 Framework 홍수의 시대를 살고 있다. 하지만 왜 우리나라에서 만든 유명한 Framework은 없을까? 이러한 현실을 안타까워하며, 부족하지만 몇 가지 논문과 번역 중인 책의 지식들을 합쳐 여러분이 Framework 작성시 고려해야 될 사항들을 2회에 걸쳐 공유하고자 한다.
--

손영수, 장진호, 고상원, 전재민 arload@live.com , http://www.arload.net (아키텍트로 가는 길)
개발자가 인정하는 아키텍트를 꿈꾸는 아키텍쳐 마니아들이다. 현재 함께 Framework Guidelines 2nd Edition을 번역하고 있으며, PLoP 2009 학회 참석을 준비하고 있다. 프레임워크 및 소프트웨어 설계 관련 자료들을 블로그(http://fdg.springnote.com)를 통해 공유하고 있다.
--

Framework를 만드는 법에 대해서 공유하기 이전에, 먼저 Framework가 뭔지 생각해 보는 시간을 갖도록 하겠다. Framework에 대한 다양한 정의가 있지만, 필자의 의도를 가장 잘 설명해줄 정의를 소개하고자 한다.

----------------- 박스 처리 ----------
POSA2의 저자인 Douglas Schmidt 박사의 Framework 정의
Frameworks define “semi-complete” application that embody domain-specific object structures and functionality. 프레임워크는 도메인 기반의 지식으로 구성된 객체 구조와 기능을 가지고 있는 반쯤 완성된 어플리케이션이다.

반쯤 완성되어 있다. 여기에 큰 힌트가 있다. 우리가 자주 듣는 Library와 Framework의 차이는 무엇일까? 둘 다 재사용의 산물이지만, 사실 생산성 입장에서는 큰 차이를 가진다.

[image: image9.jpg]

그림 1. Class Library 와 Framework의 차이
위 그림에서 알 수 있듯이 Framework은 자기 자신을 제어할 수 있는 Control-Flow를 내부적으로 가지고 있어 개발자가 일일이 모든 것을 만들 필요가 없다. Library에 비해 일일이 제어해줘야 하는 부분이 대폭 줄었다고 생각하면 된다. 반면에, Framework이 어떻게 동작하는지 전체적인 흐름을 파악하고 있어야 Hooking을 통해 세밀한 제어가 가능하다라는 단점을 가지고 있기도 하다.
필자는 2회에 걸쳐 아래와 같은 여섯 가지의 주제를 통해 Framework를 논하고자 한다.

· 조직 (가장 강력한 설계 툴)

· 계획 (Framework를 올바르게 구축하기 위한 계획)
· 아키텍처 (오랫동안 사용할 수 있는 품질 좋은 Framework을 만들기 위한 고려사항들)
· 설계 (품질을 보장하기 위해 고려해야 되는 것들)
· 개발 (Framework을 만들기 위해 팀 플레이 시 고려해야 되는 사항들)
· 그 외에 고려해야 되는 것들 (가독성, 문서화)

조직 (Organization)
조직 구조의 중요성
프로젝트을 관리하기 위한 3요소로 범위(scope), 비용(cost), 시간(time)을 언급한다. 하지만 요즘 프로젝트가 거대화되고 장기화되면서, 새롭게 관리해야 되는 요소가 발견된다. 바로 조직(Organization)이다. 조직 구조가 복잡해 지만 복잡해 질수록, 커뮤니케이션 역시 복잡해지고, 당연히 이 영향을 고스란히 여러분의 소프트웨어도 받을 수 밖에 없다. 소프트웨어 업계에서는 조직 구조와 연관된 재미난 법칙이 있다.
---- 박스처리 --
Conway’s law (콘웨이의 법칙)

If you have four groups working on a compiler, you’ll get a 4-pass compiler
여러분이 하나의 컴파일러를 만들기 위해 4개의 팀을 만든다면, 여러분은 4단계(four-pass) 컴파일러를 얻게 될 것이다.
--
위 법칙의 핵심은 팀 구조가 바로 소프트웨어의 구조가 된다는 것이다. 당연히, 팀을 구성된 후 요구사항을 분석한다면, 팀 구조에 맞춰 분석이 이루어지기 때문에, 팀 구조 그대로 소프트웨어 구조가 나올 수 밖에 없다. 소프트웨어의 특성을 파악하기도 이전에, 소프트웨어의 큰 구조를 정하는 우를 범한 것이다. 그래서 팀을 구성하기 이전, 프로젝트의 도메인 전문가나 구성원 전체가 모여, 프로세스를 정제한 후에 프로세스에 맞게 IT 조직을 구성할 필요가 있다.
조직 구조에 따른 적합하나 설계 방법

하지만 이미 조직 구조가 정해져 있다면, 조직 구조와 문화를 이해해서 적합한 Framework를 구성해야 된다.

· 팀의 크기를 고려해야된다.

만약 Framework를 개발하는 팀은 작은 반면에, Framework를 사용하고자 하는 팀이 많다면, 모든 팀의 요구사항을 들어주기는 거의 불가능하다. (우스개 소리로 들릴 수도 있겠지만, 아키텍트의 가장 큰 덕목은 요구사항들을 줄이는 것이다.) 그렇기 때문에 파레토의 법칙인 80/20 룰에 의거해서 Framework를 구성해야 된다. Framework 사용자들이 가장 많이 활용하고 사용하는 부분들을 집중적으로 만들 필요가 있다. 반면에 Framework를 구성하는 팀의 여유가 있어, 충분히 많은 기능을 설계할 수 있다면, 많은 요구사항들을 수렴할 수 있기 때문에 모듈간의 일관성(consistency)을 유지하는데 많은 초첨을 두어 구축해야 한다. (일관성의 예를 든다면, log를 남기기 위해 xml 로 남기나, text로 남기나, network drvier에 남기나 동일한 인터페이스를 제공하게 설계 하는 것을 말한다.) 일관성을 유지하기 위해서는 끊임없이 Prototype을 만들고 Feedback을 받아 설계를 정제해야 될 필요가 있다. 추후 Framework Design Studio라는 툴을 통해 이 부분을 설명하겠다.
· 조직의 문화를 고려해라.
만약 조직이 고객중심의 문화(업무)를 가지고 있는 회사라면, End-2-End 시나리오들을 먼저 추출한 후 시나리오를 잘 지원하기 위한 형태로 Framework를 설계 해야 된다. Visual Studio 2008(.NET Framework 3.x) 같은 경우는 개발자와 디자이너 간의 협업에 대한 시나리오를 먼저 추출한 후, 이것을 만족시키는 형태로 구축되었다. 반면에 기술을 중요시 여기는 하위 레벨의 회사라면, 기술의 변화를 쉽게 수용할 수 있게 확장성을 중요시 여겨 설계 되어야 한다.
· 조직의 의사 결정 메커니즘을 고려해라.

개별적인 맨 파워들을 중요시 하는 회사라면, 대부분 타임 투 마켓 (Time to Market)을 잘 지원할 수 있어야 되므로 빠른 의사 결정이 지원하는 것에 중점을 두어 설계 되어야 한다. 그리고 계층적인 조직구조를 가진 회사라면, 서로간의 이질적인 의사 표현 방법을 통합하고 상호 운영하는데 초점을 맞추어야 될 것이다.
계획 (Planning)

땅콩버터와 마천루
Framework를 어떻게 해야 잘 구축할 수 있을까? 정답은 어플리케이션의 특성을 고려하여 적합한 계획들을 세워야 된다는 것이다. 그 중 하나인 프로세스 이야기를 하고자 한다. (사실 이 이야기는 2008년 9월호에 팀 생산성에 언급한 부분이다.)
[image: image1.jpg]Application Block
DATABASE ADTs

MATH NETWORKING

GRAPHICS GUI

Singleton Strategy

Reactor | (Adapter ADTs

[Active Object J

NETWORKING

App Specifig,
Logic

00 Design Singleton Adapter
state] Active Object
DATABASE GRAPHICS J
Design Pattern
Class Library Application Framework

Component Architecture Component Architecture

땅콩 버터는 “Feature들이 중심이 되어 소프트웨어를 만드는 Bottom-Up 방식의 프로세스”를 말한다. Bottom-Up 프로세스는 기존의 비교 대상도 없고, 전혀 새로운 소프트웨어를 만들 때 사용하는 방법이다.
이 방식은 견고하고, 더디지만 모든 Feature들이 골고루 기능 향상을 가져올 수 있는 장점이 있어, 마치 땅콩 버터 (Peanut Butter) 처럼 모든 기능들이 골고루 퍼지고 진화할 수 있어 땅콩 버터 방식이라고 말한다. 흔히 하위 레벨의 Framework이나 저 수준의 Library를 개발할 때는 이러한 방식이 선호된다. 만약 여러분이 구성하고자 하는 어플리케이션이 고객의 요구사항들을 많이 받아 들여야 하고, 다양한 시나리오를 요구하는 경우인데도, Feature 에 초점을 맞춘 땅콩버터 식의 프로세스와 조직을 구성하게 되면 어떻게 될까? 새로운 시나리오가 탄생하면 Feature별로 구성된 조직들간에 협업 작업이 발생하며, 딱 기능을 나누기에 애매한 경우 많은 정치, 책임의 분배 문제 등이 발생된다.
이와 상반된 방식으로 마천루 (Skyscraper) 방식이 있다. 시나리오가[image: image8.jpg]

 마천루처럼 높이 솟아 전체 소프트웨어의 기능을 구현하기 위한 좋은 기준이 된다는 것이다. 명백한 기준이 있다는 것은 많은 시행착오를 줄일 수 있을 뿐만 아니라, 고객의 관점에서 소프트웨어를 생각할 수 있는 장점을 가질 수 있다. 흔히 우리가 알고 있는 시나리오를 만들고 Prototype 방식으로 개발을 해 나가는 것이라고 생각하면 된다. 바로 Top-Down 방식의 프로세스가 여기에 해당된다. 다양한 고객들이 사용하는 상위 레벨의 응용 소프트웨어에 필요한 Framework를 만든다면, 당연히 시나리오 기반(Skyscraper)의 방식으로 소프트웨어를 설계하는 것이 낫다.
역시 이 방식도 단점이 있는데, 시나리오 기준으로 하다 보니 소프트웨어가 잘 정리된 일괄적인 구조로 설계 되기 어렵고, 특정 Feature들이 먼저 개발되는 급성장으로 인해 전제 모듈간의 불균형을 야기시킬 수 있다. 그리고 갑자기 시나리오가 수정된다면, 이것이 소프트웨어 구조에 많은 영향을 미치게 된다. 바로 땅콩버터가 언급하는 점진적이면서 균형 있는 발전이라는 장점을 잃어버리게 된다.
그럼 이 두 가지 프로세스의 장점은 부각시키고, 단점을 상쇄시키는 것은 무엇일까? 바로 적절하게 섞는 것이다.
[image: image2.jpg]Vision statement Feature complete RTM

Release
Planning M1 M2 Testing

A A
N\

oSS

Technology Preview Beta 1 Beta2 RC1

그림 2. 중용의 미학 – 마일스톤
위에서 본 Milestone 형태와 같이, 초기 단계는 땅콩버터 방식을 기반으로 Infra를 구축하는데 초첨을 맞추고, Infra가 구축된 후부터는 땅콩 버터 (기본적인 기능부터 구현해서 점진적으로 기능을 추가) 방식을 유지하되, 릴리즈가 거듭될 때마다 더불어 사용 가능한 시나리오들을 점진적으로 증가시켜 테스트하는 마천루 방식을 혼합한 좋은 예다.
Microsoft가 Milestone 방식을 고수하는 이유는 고객이 필요한 소프트웨어를 만들기 위한 방법이다. Code Complete에서 언급하는 것과 같이, 총 10개의 기능을 구현해야 한다면 먼저 2개의 기능을 구현한다.. 그냥 모듈이 아니라 소프트웨어로 동작하는 형태로 일부 기능을 먼저 만들어 낸다는 것이다. 그래서 이 2개의 기능을 만든 다음 커뮤니티 배포 버젼을 만들어 관심있는 고객이나 MVP들에게 배포를 한 후 피드백을 받는다. 그리고 다음 Iteration에서는 고객의 피드백을 받아 기존의 2개의 기능을 수정하고 추가적으로 새로운 2개의 기능을 추가해 4가지의 기능이 동작하는 제품을 만든다. 그 다음 또 피드백을 받아서 4개의 기능을 수정하고 2개의 기능을 추가해 6개의 기능을 구현하는 형태로 진행되어 진다. 당연히 고객과 MVP의 피드백을 끊임없이 받았으니 소프트웨어의 질은 매우 좋을 수 밖에 없다.
그리고 Milestone은 또 하나의 장점을 가져 오는데, 동작하는 소프트웨어 기반으로 기능을 계속해서 추가하다 보니 시장의 변화에 탄력 있게 대처할 수 있다는 것이다. 예를 들어 총 10개중 6개의 기능을 구현하고 다음 Iteration에 들어 갈려는 순간 경쟁사가 비슷한 기능의 소프트웨어를 내 놓았다면, 경쟁사가 제공하는 기능들만을 빨리 추가하고 바로 제품으로 내놓는다는 것이다. 원래의 목적인 10개의 기능을 구현하지 않고 바로 경쟁사의 요구에 탄력적으로 대응할 수 있다.
하지만 이 방식은 패키지 소프트웨어와 같이 고객의 요구사항이 어느 정도 고정화 되어있고, 충분한 개발 시간이 있을 때 가능한 애기이다. 지인의 말처럼, 고객의 요구사항이 끊임없이 변해서 Beta가 Beta를 만드는 SI 위주의 우리나라 소프트웨어 현실에는 이것 또한 적합하지 않다. 이럴수록 아키텍트나 의사 결정권자의 정치력과 협상력이 절실히 요구 된다.
아키텍쳐 (Architecture)
Framework이 구축되어 여러 팀이나 구성원들이 사용하게 된 후에는, 호환성, 재 배포등의 문제로 Architecture를 재구성하는 것은 매우 어려워 진다. 오랫동안 사용할 수 있는 품질 좋은 Framework을 만들기 위한 고려사항들을 설명하고자 한다.
타입들(Types)

우리가 Framework을 구축할 때 어떠한 Type들을 사용해야 할까? 확장성과 유연한 Framework를 만들기 위해서는 중요한 사항이다. 먼저 타입들의 종류를 살펴보도록 하자.
· Primitive : Int32, String과 같은 기본 데이터 타입이다. Primitive 데이터 타입은 모든 데이터 타입의 가장 하단부에 위치하기 때문에 어떠한 변화(인터페이스 변경, 제거등)가 발생했을 경우 다른 API들에게 미치는 영향이 매우 커서 한번 설계한 부분을 변경한다는 것은 거의 불가능하다. .NET Framework를 설계한 Krzysztof Cwalina는 Primitive를 설계할 때 가장 큰 실수로 ToString() 인터페이스를 타입에 추가한 것을 뽑는다. 덕분에 모든 타입들은 ToString()을 구현해야 되는 강제성과 Reflection 에 항상 의존성(Dependency)를 가지게 되었다.
· Library (Component): EventLog, Debug와 같이 풍부한 행위와 정책들을 가지고 있는 타입들로써 타입 계층 구조에서 가장 상단부를 차지한다. 그렇기 때문에 제일 쉽게 확장(기존 메소드나 변수들은 그대로 나두고 새로운 기능만 추가) 가능하다. 하지만 여기서 주의할 점은 Component를 구축할 때 매개변수로 Library를 직접 사용해서는 안된다. 뒤에서 언급하는 의존성(Dependency) 문제의 주범이기 때문이다.
· Abstraction (Interface): Stream이나 IComponent와 같은 추상 클래스(인터페이스)로 Framework에 확장성과 유연성을 제공하는 타입이다. 서두에서 언급한 Framework의 장점인 반 자동화(생산성이 높다)되어 있다는 말은 내부적으로 흐름을 제어하는Control Flow를 Framework이 가지고 있음을 의미하다. 이 말을 좀더 쉽게 풀이하자면 Framework는 순수한 인터페이스 보다는 전체적인 흐름을 가지고 있는 Template Method 패턴과 같은 Abstraction(abstract)을 더 많이 사용한다는 것이다. 모든 Concrete Class가 참조하고 있기 때문에 기능을 추가 및 확장하기가 매우 어렵다.

------ 박스 처리. Graybox Framework ---------------
GoF의 디자인 패턴에서, 객체지향적인 시스템을 구성하는 방식으로 Whitebox (상속)과 Blackbox (조합) 두 가지를 애기한다.
상속(Inheritance)을 통해 계약기반의 시스템을 구성함으로써, 확장성과 일관성 있는 구조를 가질 수 있는 장점이 있다. 단점으로는 재사용 측면에서만 보자면 상속을 이용해서 확장해 나가기 위해서는 부모 클래스 (Abstract 클래스 또는 Template Method)의 흐름과 행위들을 파악해야 하는 단점이 있다.
조합(Composition)은 단순히 인터페이스 하나만 호출하기 때문에, 재사용하기가 상대적으로 용이하고, 런타임시에도 쉽게 컴포넌트를 교체할 수 있는 장점이 있다. 하지만 상속에 비해 확장성이 떨어지고 올바른 인터페이스를 설계하기 어렵다.
그래서 서로의 단점을 상쇄시키기 위해, 상속(Whitebox)과 조합(Blackbox)을 합쳐서 사용하는데, 하얀색과 검은색을 합치면 회색이기 때문에 Graybox Framework라고 부른다. 디자인 패턴의 Template Method Pattern처럼 Abstract 클래스에 있는 Template Method로 하위 클래스의 흐름을 일관성있게 제어하면서, 조합을 이용해 런타임 시에도 서브 클래스를 교체할 수 있다.
 Framework 설계의 대가인 Ralph Johnson도 자신의 논문인 Evolving Framework에서 Whitebox Framework으로 일관성 있는 흐름과 제어 방향을 구축한 후, Blackbox Framework으로 중복된 부분을 줄여나가는 방법을 선호하고 있다. 자세한 부분은 논문을 요약 정리한 필자의 블로그 포스트(http://arload.wordpress.com/2008/09/15/evolvingframeworks/)나 마소 2008년 12월호의 김용현님의 글을 읽어보길 바란다.

--

의존성과의 악연
컴포넌트 하면 대부분의 개발자들이 떠올리는 이미지는 레고나 플러그와 같이 꼽기만 하면 바로 동작하는 모듈을 생각할 것이다. 하지만 요즘같이 요구사항이 급변하고 진화하는 상황에서는 컴포넌트를 재사용의 단위보다는 배포의 단위로 보는 것이 바람직하다. 그러므로 컴포넌트를 “같이 배포되고 같이 진화하는 타입들의 집합의 단위”로 보는 것이 맞다. 컴포넌트들이 요구사항을 받아들이면서 서서히 진화하게 되면, 우리가 골치 아픈 문제를 만나게 된다. 바로 의존성 문제이다. 거기다 Framework은 다른 어플리케이션이 사용하기 때문에 태생적으로 의존성이 높을 수밖에 없는 부분이다. 그래서 대부분의 Framework(.NET과 JAVA)는 초기에 배포한 Class Library에 기능을 추가하지 않고, Base Class Library로 명명한 후, 별도의 Library를 추가하는 방식을 취하고 있다.
의존성을 무너뜨리는 방법을 알기 이전에 먼저 종류에 대해 알아보도록 하자.

· API Dependency (Surface Dependency) : Component A가 Component B 에 의존성을 가지는 경우로, 컴포넌트 B에 있는 어떤 타입들을 컴포넌트 A의 파라메터나 리턴 값과 같이 표면(surface)에 누구나 접근할 수 있게 노출시킨 경우다. Surface Dependency라 부르기도 하며, Interface, Parameter, Return Type, Attribute, Nested Type이 API Dependency의 좋은 예이다.
· Implementation Dependency : 이것은 위 API Dependency와 구분해, Implementation에 의존성을 가진 경우이다. 표면에 다른 컴포넌트의 Type들이 노출된 것은 아니지만, 내부적으로 Type을 사용하거나, 메소드를 이용하는 경우다. 내부적으로 Hard Dependency와 Soft Dependecy로 나뉘는데 Hard Dependency는 시스템이 동작하기 위해서는 필수적인 요소가 Dependency를 가질 때, Soft Dependency는 Optional할 때를 말한다.
· Circular Dependency : Component A가 B를 의존하고 B가 다시 A를 의존하는 경우를 말하는 것으로, 몇 단계를 거쳐 간접적으로 발생하는 것도 포함된다. 꼭 피해야 되는 Dependency이다.

위에서 언급한 의존성을 해결하는 가장 일반적인 방법은 바로 계층화(Layering)이다. 하나의 레이어로 연관성 있는 컴포넌트를 묶음으로써 응집도를 높이고, 캡슐화함으로써 다른 Layer간에 변화에 대한 충격을 완화 시킬 수 있다. 하지만 계층화(Layering)만 한다고 해서 모든 의존 문제가 해결되는 것이 아니다.

[image: image3.jpg]—— ———— - " ——--—-—-

Reflection

그림 3. 의존성의 계층 관계
그림 3을 보도록 하자. 상위 레이어의 컴포넌트(WPF)가 하위 레이어에 있는 컴포넌트(Base Class Library)을 호출하는 것은 바람직한 상황이다. 하지만 그 외에 상황들은 고민해볼 이슈들이 숨겨져 있다.
꼭 피해야 할 Circular Dependency

하위 레이어(Reflection)에 있는 모듈이 상위 레이어(XML)의 모듈을 호출하는 상황인 경우는 꼭 피해야 한다. 의존성의 최대 골치 거리인 Circular Dependency가 직,간접적으로 만들어 질 수 있기 때문입니다. 여러분의 모듈 중 일부분에 변화를 가하면, 다른 것들이 연쇄적으로 체인과 같이 묶여 수정해야 되는 상황이 발생한다면 어떻게 될까요? 결국 그래프를 이루는 모든 모듈에 대해서 검증(테스팅)을 해야 하는 문제가 발생한다. Clean Code의 저자인 Robert C. Martin은 Circular Dependency를 끊는 방법으로 완충작용을 해줄 새로운 Package 생성하거나, Interface를 통해 변화를 상쇄시키는 방법을 권하고 있다.

[image: image4.jpg])

Analysis

T; “

Comm Error

그림 4. Circular Dependency
개발자라면 누구나, Try.. Catch문을 걸어서 발생한 오류를 화면에 MessageBox로 본 경험이 있을 겁니다. 이렇게 되면 바로 위 그림과 같은 Circular Dependency가 발생하게 된다.

이 그림은 통신 모듈에 필요한 에러사항들을 GUI 관련 모듈을 통해 출력하다 보니, 서로간에 의존성을 갖게 된 예다. Protocol 관련된 컴포넌트가 변경되면, 순환구조를 이루는 모든 컴포넌트를 검사할 필요가 있다. 이러한 관계를 끊기 위해서 Robert C. Martin은 아래가 그림과 같이 새로운 Package를 만드는 것을 권하고 있다.
[image: image5.jpg]‘Modem Control

Database

Comm Error

그림 5. 새로운 패키지를 추가해 Dependency를 깨는 방법
시스템에서 사용하는 모든 메세지(Error 메세지를 포함)를 관리하는 Manager를 별도로 두어, GUI와 통신 모듈이 한 방향으로 Dependency를 구성해 Circular Dependency를 끊어 버린 경우입니다.

또한 다른 방법으로는 Log4X (NET, J)처럼 Attribute(AOP) 이용해 기존 모듈에 영향을 최소화하는 형태로 메시지메 관리하거나, Listener를 이용해 IoC를 구성하는 것도 좋은 방법입니다. (IoC는 뒷부분에서 언급하도록 하죠) 그럼 또 다른 형태의 Circular Dependency를 보도록 하자.

[image: image6.jpg]

그림 6. 비간접적으로 Circular Dependency가 생겼을 경우

그림 6의 상황은 두 패키지를 구성하는 내부 모듈들간에 간접적인 Circular Dependency가 생겼을 경우이다. 이런 경우 Pattern과 같이 Interface를 완충 장치로 사용하여 해결할 수 있다. Y가 바로 B를 사용하지 않고 B에 대한 인터페이스인 BY를 Y 모듈과 같은 패키지(레이어)에 구성해 의존성의 흐름을 동일한 방향으로 바꾼 경우이다.
무거운 Dependency를 깨뜨리는 무기 IoC

다시 그림 3을 보면 같은 레이어에서는 어떻게 해야 할까? 이때 주의해야 할것이 바로 무거운 Dependency이다. 이 의미는 모듈간에 강 결합으로 인해 쉽게 배포, 테스트, 확장하기 어려운 상황을 무거운(Heavy) Dependency라고 한다. 앞에서 언급했던 Implementation Dependency에서 특정 모듈이 없으면 아예 돌아가지도 않는 상황을 말하는 Hard Dependency라고 봐도 무방하다.

--- 리스트 1. 강력한 결합으로 구성된 Tracer --------------------

/* MessageQueue에 의존적인 Tracer
MessageQueue라는 특정모듈에 의존적이서, 그 메시지를 단지 Queue에 쌓인 감으로만 볼수 있다. */
public class Tracer {

MessageQueue mq = new MessageQueue(…);

public void Trace(string message){

mq.Send(message);

}

}

/* 테스트 하기도 역시 어렵다. */
Tracer tracer = new Tracer();

public void ProcessOrder(Order order){

tracer.Trace(order.Id);

…

}

 이 소스 코드는 Tracer를 MessageQueue 로만 데이터를 추적할 수 있기 때문에, Tracing이 어렵고 확장성 역시 떨어진다. MessageQueue에서 다른 형태로 출력을 하기 위해서는 결국 Tracer를 수정해야 된다. 바로 무거운 Dependency가 발생한 경우이다. 무거운 Dependency를 깨기 위해 IoC (Inversion of Control)을 적용할 필요가 있다.
--- 리스트 2. IoC 개념을 적용한 Listener 기반의 Tracer --------------------

// IoC를 적용하여 확장성, 테스트 용이성을 획득한 Tracer와 TraceListenr
public class Tracer {

TraceListener listener;

public Tracer(TraceListener listener){

this.listener = listener;

}

public void Trace(string message){

listener.Trace(message);

}

}

public abstract class TraceListener {

public abstract void Trace(string message);

}

/* IoC를 적용해 쉽게 다른 Tracer(ConsoleTracer)로 변경시킴으로써 테스트 용이성 및 확장성을 획득했다. */
Tracer tracer = new Tracer(new FileListener());

public void ProcessOrder(Order order){

tracer.Trace(order.Id);

…

소스에서 보이는 것처럼, IoC의 핵심 키워드인 XXXListenr(TraceListener)기반으로 설계함으로써, MessageQueue외에도 File, XML과 같은 다양한 형태로 출력을 할 수 있는 확장성과 테스팅 용이성을 얻을 수 있게 되었다. 하지만 FileListener를 XXXListener로 변경을 위해서는 소스 코드를 변경하거나 Metadata 형식 (Component Configurator)를 직접 구축해야 한다. 의존성의 문제는 아니지만 상황에 맞게 의존성을 주입해야 하는 문제를을 한방에 해결해 줄 수 있는 Dependency Injection Container를 고려할 필요가 있다.
--- 리스트 3. IoC 개념을 적용한 Listener 기반의 Tracer --------------------

// 리스트 2에서 언급한 Tracer 사용 부분
Tracer tracer = new Tracer(new FileListener());

public void ProcessOrder(Order order){

tracer.Trace(order.Id);

…

// Dependency Injection Container가 추가됨으로써, 좀더 유연성이 증대 되었다.

Tracer tracer = container.Resolve<Tracer>();

public void ProcessOrder(Order order){

tracer.Trace(order.Id);

…

}
--

Java 진영에는 Spring이라는 걸쭉한 Framework이 있으며, .NET 에는 아직 주류가 없어 다양한 Dependency Container가 경합을 벌이고 있다. NInject, autofac, Castle Windsor, PicoContainer.NET, Spring.NET, StructureMap, Unity와 같은 다양한 Container가 있으니 입맛에 맞는 것을 사용하면 된다. 그리고 지면상의 제약으로 다루지 못했지만 Dependency Injection (의존성)과 IoC 간에 패턴들을 잘 설명한 Martin Fowler의 포스트(http://www.martinfowler.com/articles/injection.html)를 읽어보길 권한다.
Dependency를 잘 파악할 수 있는 xDepend
해결책을 먼저 언급했지만, 사실 거대한 Framework, Application에서 Dependency를 일일이 파악하는 것은 불가능하다고 할 수 있다. 이러한 문제를 해결하기 위해 xDepend (JDepend, NDepend), DependencyFinder 와 같은 다양한 의존성 파악 도구들이 있다. 이중에 가장 강력한 기능을 제공하는 닷넷용 xDepend Tool인 NDepend를 간략히 언급하겠다.
[image: image7.png]e —————r
mgrTr T e [——y T
- . Y
P i
raer, : 4
Sy
P,
L Tt
oo et
S e
et
vty
et
e
I
| P
2 R
20 —
=% EnciLogoer - Nowd
T ||/ TS oeratammenirimtres
P, o —
Ml e
e
n ol o
by et
Vi, |
2 NDinDet 3 uickGraph Algosthms Graphy
% NoowsDer ¥ | ¥ -
. o |
1.
| L
T T
[Declaing type: Encelogoer a4 R
fesne s —
o i o [) osmoomo] (3]s [oeseimn]
Gnan = I
il L) W e OB prrrp— o [vami 17 couns > § seLEeT Tor B 1
(AT —— g DN TR
[several source fiefs] re ot avsdable = |Code Qusly
Gt f p— e e e e
o= e
.

Resdy

그림 7. NDepend 실행화면
이 툴은 JDepend을 .NET용으로 Converting하여 개발되었지만, 상용 버전으로 판매하게 되면서, JDepend보다 더 많은 강력한 기능들과 사용하기 편리한 UI를 제공하고 있다. (초창기 Ndepend 버전은 무료 배포하고 있다.) 프로젝트 간에 종속성을 행렬 그래프나 다이어그램으로 볼 수 있으며, 복잡도와 의존성을 분석 관리 할 수 있다. 자동으로 Circular Dependency를 찾아내는 기능도 내포하고 있다. 그러나 이 툴의 가장 강력한 기능은 바로 CQL (Code Query Language) 이다.
---- 리스트 4. CQL의 예 ---------------------------

특정 인터페이스의 구현 클래스는 무엇인가?

SELECT TYPES WHERE IsClass AND Implements "System.IDisposable"
가장 복잡한 10개의 메소드는 무엇인가?

SELECT TOP 10 METHODS ORDER BY CyclomaticComplexity
복잡한 메소드들 중에 충분하게 주석이 달려있지 않는 메소드 들은?

SELECT METHODS WHERE CyclomaticComplexity > 15 AND PercentageComment < 10

이렇게 SQL과 유사한 쿼리로 입 맛에 맞게 다양한 속성들을 추출할 수 있다.
그 외에 강력한 기능들을 쉽게 동영상 강좌로 제공하고 있으므로, 관심있는 분들은 NDepend 공식 사이트인 http://www.ndepend.com을 방문하길 바란다. (30일 Academic 버젼도 사용해 보길 권한다.)

맺음.

제한된 지면에, 너무나 많은 부분들을 다루려다 보니 큰 개념만 전달하게 된 것 같다. 아쉬운 분들은 Devpia Eva팀이 만든 동영상 강좌와 참조 자료를 통해 좀더 살펴 보길 바란다. 다음 기고에서는 호환성, 설계, 개발 시 고려해야 하는 사항들과 도움이 될만한 툴 들을 더 소개하겠다.

Reference

· Adreas Ruping, Building Frameworks and Applications Simultaneously, PLoP 2000.

· Krzysztof Cwalina, Brad Abrams, Framework Design Guidelines 2nd Edition, 2008.
· Krzysztof Cwalina , Framework Engineering, TechED Euro 2007

· Douglas Schmidt’s, JAWS : A Framework for High Performance Web Server

한국어 동영상 강좌 - http://www.devpia.com/NET2/EvaCast/Lecture/?cu=view&r=11

· Don Roberts, Ralph Johnson, Evolving Framework.

한국어 요약 자료 - http://arload.wordpress.com/2008/09/15/evolvingframeworks/
· Robert C. Martin, Principles of Package Architecture. Object Mentor
한국어 동영상 강좌 - http://www.devpia.com/NET2/EvaCast/Lecture/?cu=view&r=108 .
· Martin Fowler, Inversion of Control Container and Dependency Injection Pattern
· NDepend (http://www.ndepend.com)

· JDepend (http://clarkware.com/software/JDepend.html)

· Dependency Finder (http://www.codeplex.com/DependencyFinder)

